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Phenomena characterized by conservation (or balance laws) of physical quan­
tities are modelled by hyperbolic and kinetic equations. Thus these equations 
appear in several fields of applied mathematics, such as fluid dynamics, rar­
efied gas dynamics, behaviour of semiconductor devices, magneto fluid dy­
namics, astrophysics, traffic flows, to mention just a few. 

The numerical treatment of such equations however is difficult, because 
solutions can develop singularities in a finite time, or become very steep, and, 
in many cases, uniqueness of the solution can be obtained only imposing fur­
ther constraints. As a consequence of these difficulties, numerical solutions 
can develop spurious oscillations, and even converge to the wrong solution. 
Moreover, kinetic equations can be solved, at present, through schemes char­
acterized by a very high computational complexity. For these reasons, the 
numerical integration of conservation laws has attracted a lot of attention 
from the academic community. 

First order schemes for conservation laws were developed in the '50s, by 
the pioneering work of Godunov and Lax. These schemes are robust, but, be­
cause of their low accuracy, are unable to resolve solutions with structure. In 
the '80s, the theory and construction of non-oscillatory second order schemes 
underwent a fast and impressive development, thanks to the work of Harten, 
Osher, Van Leer, Roe, and many others. In the late '80s, Harten, Osher and 
coworkers introduced ENO schemes, which paved the way to the construc­
tion of higher order schemes. The schemes developed in this period of time, 
however are expensive, difficult to implement and highly problem dependent. 

The most recent developments in this field can be grouped together under 
the idea of constructing more flexible and efficient schemes. In this line of 
thought, we mention WENO schemes, by Osher, Shu and coworkers, central 
schemes, initially proposed by Nessyahu and Tadmor, and relaxation schemes, 
first proposed by Jin and Xin. These schemes do need neither costly exact or 
approximate Riemann solvers, nor projection along characteristic directions. 
Although mostly they were initially developed and tested for the classical 
problems of gas dynamics, they have been applied succesfully to a wide field 
of problems arising form applied mathematics. 



312 Hyperbolic and Kinetic Equations 

These developments contribute to bridge the gap between the sophistica­
tion and complexity of research codes, on one side, and, on the other side, 
the robustness and flexibility asked for in commercial codes. 

In this minisymposium, further developments and applications are dis­
cussed. The first paper, Centml schemes for balance laws by G. Russo is a 
comprehensive review of high order central schemes applied to balance laws. 
The second paper, A Naive implementation of ACM in nonoscillatory centml 
difference schemes for 2D Euler equations, by K.A. Lie proposes a simple and 
effective technique to improve the resolution of contact discontinuities. The 
motivation for this work derives from the fact that contact discontinuities 
in general are poorly resolved by finite difference schemes. The third paper, 
Numerical solution of the non-homogeneous Fokker-Planck-Landau equation, 
by F. Filbet and L. Pareschi describes a coupling between spectral methods 
for the collision part and non-oscillatory reconstruction for the convective 
part, to efficiently solve a kinetic model. Besides its low computational cost, 
this scheme is interesting in the present framework, because it illustrates how 
techniques initially developed for hyperbolic equations can be succesfully ap­
plied to more complex problems, such as kinetic models. 

Several models are given by interacting phenomena, characterized by dif­
ferent scales. Often the macroscopic description is a good approximation to 
the solution. Hence the need to obtain numerical schemes which can pro­
duce a reliable macroscopic description, without resolving the underlying 
microscales. This issue ia addressed in Multiscale hyperbolic equations: nu­
merical approximation and applications, by G. N aldi. 

Finally an approach to the solution of problems with moving boundaries 
can be found in Singularity and numerical analysis of a singular moving 
boundary hyperbolic problem, by R. Fazio. This is an example of the new 
developments in a promising field of research for conservation laws: the opti­
mization of resources through the construction of adaptive and moving grids 
for the integration of conservation laws. 
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Abstract. A brief review is given of shock capturing central schemes for the numer­
ical solution of hyperbolic systems of balance laws. It is shown how to construct 
high order schemes for conservation laws on a staggered mesh, by using Central 
Weighted Essentially Non-Oscillatory reconstruction, and how to construct second 
order central schemes for systems with stiff source which are accurate in the stiff 
limit. The development of higher order schemes for systems with stiff source is also 
discussed. 

1 Central Schemes for Conservation Laws 

The purpose of this talk is to give a brief review of shock capturing central 
schemes for the numerical solution of systems of conservation laws, and for 
the treatment of hyperbolic systems with source. 

We consider a system of balance laws of the form 

8u(x, t) 8f(u(x, t)) = R( ( )) 
8t + ax u x,t , (1) 

u E JRm; J, R : JRm ~ JRm, A = 'V uf(u) has real eigenvalues and a basis 
of eigenvectors. If R = 0 the system is said to be of conservation laws. Sys­
tems of this form appear in many physical systems, such as gas dynamics, 
magnetohydrodynamics, shallow water equations, hydrodynamical models of 
semiconductors, just to mention some typical examples. In the first two cases 
it is R = 0, while in the latter two there is a source term on the right hand 
side. 

Finite volume schemes in conservation form can be divided into two broad 
families: upwind schemes and central schemes. 

The prototype of upwind schemes is Godunov scheme. Space and time are 
discretized into cells. At each time step tn, the solution u(x, tn) is approxi­
mated by a piecewise constant function, the value in each cell representing 
an approximation of the cell average of u(., tn)· The cell average at the new 
time step is obtained by integrating the conservation law (1) on the border of 
the cell in space time (see Fig. 1, left). For linear systems Godunov methods 
is equivalent to the classical first order upwind scheme. Such method is first 
order accurate, it is Total Variation Diminishing, and it satisfies a discrete 
entropy inequality. 
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Fig. 1. Integration of the equation over non-staggered cell j (Godunov schemes), 
and staggered cell j + 1/2 (staggered central schemes) 

High order versions of Godunov scheme are given by the popular ENO 
(Essentially Non Oscillatory) and WENO (Weighted ENO) schemes. They 
are based on a piecewise polynomial reconstruction of the function in each 
space cell. 

The idea behind ENO is the following: choose a degree p, and reconstruct 
the function to order p + 1 with the least oscillatory polynomial of degree 
p. This can be effectively obtained by a recursive algorithm, that has been 
widely used in the applications. An very clear discussion on ENO and WENO 
scheme is given in [11]. 

An evident disadvantage of Godunov method is that it requires the knowl­
edge of the solution to the Riemann problem (or at least a numerical approx­
imation of it). In several relevant cases, such solution is know (Riemann 
solver). However, there are several other cases where there is no simple ex­
pression of the eigenvalues and eigenvectors of the characteristic matrix A of 
the system. In such cases it would be desirable to have a scheme that does 
not rely on the solution to the Riemann problem. 

The family of central schemes is obtained by integrating equation (1) on 
a staggered grid in space time (see Fig. 1, right), obtaining 

(2) 

where uj:1112 denotes the cell average on the staggered cell j + 1/2 at time 
tn+ 1 . In order to convert the above (exact) expression into a numerical scheme 
one has to specify how to perform the piecewise polynomial approximation 
of the function u(x, tn) from cell averages, and how to approximate the time 
integral of the flux. 

Piecewise linear approximation of the function, in addition with midpoint 
rule for the integral of the flux, and Explicit Euler scheme for the predictor 
value gives the well-known Nessyahu-Tadmor scheme, straightforwardly ex-
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tended to systems with non-stiff source, 

where ..\ = dt I dx; uj I dx, fj I dx denote first order approximation of space 
derivatives, and can be obtained by a suitable slope limiter. 

2 High Order Schemes 

Higher order central schemes for systems of conservation laws (i.e. R = 0) 
can be obtained by using higher order approximation in the reconstruction 
of the function and in the evaluation of the integral of the flux. The first goal 
can be obtained by using ENO or WENO reconstructions similar to those 
used in the context of high order Godunov-type schemes. 

High order accuracy in time is obtained by a sufficiently high order quadra­
ture formula for approximating the time integral of the flux. Simpson's rule 
is sufficient for fourth order schemes. The predictor values at the nodes of 
the quadrature formula can be efficiently obtained by the use of Runge-Kutta 
methods and their Natural Continuous Extension. 

ENO-based central schemes and Runge-Kutta-NCE for the flux integrals 
have been introduced in [2]. WENO schemes are even more satisfactory than 
ENO, since they provide higher (than ENO) order accuracy for the same 
stencil. 

WENO reconstruction is obtained by a convex combination of low order 
polynomials. In upwind schemes, accuracy up to fifth order is obtained by a 
combination of three piecewise parabolas. Another (and more important) ad­
vantage in using a combination of three parabolas rather than a polynomial 
of fourth order is that the weights can adjust automatically near a disconti­
nuity of the function, in such a way that only the weight corresponding to the 
smooth part of the solution will enter in the reconstruction of the function 
near a discontinuity. 

Central WENO schemes have been introduced in [6], where fourth order 
central schemes have been constructed which make use of a convex combina­
tion of three parabolas. A more compact third order scheme is developed in 
[7], in one and two space dimensions. 
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3 Treatment of the Source 

Central schemes provide a natural way of treating the source term. The 
source, in fact, can be integrated over the cell, and approximated numeri­
cally by a suitable quadrature formula, as in Eq. (3). 

The treatment of stiff source is less trivial, since the source has to be 
treated in some implicit way, in order to guarantee stability. A second order 
central scheme for the treatment of hyperbolic system with stiff source term 
is proposed and analyzed in [4]. 

The scheme can be written as two-stage predictor corrector scheme: 

It can be shown that the scheme is second order both in the stiff and non 
stiff limit. Note that both predictors and corrector are implicit in the source 
term and explicit in the flux. For what concerns the time evolution this is an 
IMEX (Implicit-Explicit) Runge-Kutta scheme [1]. 

This scheme is not optimal, because it requires three implicit stages and 
two explicit stages. A more efficient central scheme, which requires only two 
implicit stages has been recently presented by Pareschi [9]. 

4 Future Perspectives 

Several directions can be followed to improve and generalize the results ob­
tained so far. We mention here a few research directions in the different topics 
we have discussed. 

High order central schemes. The use of CWENO + RKNCE allows the con­
struction of high order central schemes, which are based on a staggered grid. 
However, because of the intrinsic limitation of the order of the Natural Con­
tinuous Extension, the construction of a fourth order scheme requires five 
function evaluations (see [2,6]). A more efficient and elegant scheme can be 
obtained by performing time discretization of the equations first, according 
to an explicit Runge-Kutta scheme, and performing the space discretization 
later. In this way a scheme up to fourth order can be obtained with just 
four function evaluations per cell, which is optimal for explicit fourth order 
Runge-Kutta schemes [10]. 
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Systems with source. For the construction of high order central schemes for 
systems with source term it does not seem appropriate to use staggered grids. 
Non staggered versions of central schemes have been developed. In particular, 
semidiscrete second and third order central schemes for conservation laws 
are currently available [3]. Such schemes constitute basically a method of 
line approach to the problem, and are very attractive, since they allow a 
great flexibility in the time evolution. Although in some cases they are not 
as accurate as fully discrete methods (in particular for the propagation of 
linear discontinuity), they seem to be the most promising approach to the 
development of high order schemes for systems with source. We remark here 
that there are other semidiscrete schemes in the literature, which do not 
require Riemann solvers, and which are therefore very similar, in usage and 
generality, to semidiscrete central schemes (see, for example, [8]). Once a 
semidiscrete scheme has been chosen for the hyperbolic part, then the full 
system can be discretized in time using an IMEX approach. It is desirable to 
use a scheme in conservation form which is based on the point-wise values of 
the solution. Such schemes have been widely used in the context of ENO and 
WENO (see [11]). 
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